Table 16 (VIIa), 17 (VIIb), and 18 (Xa) represents this situation, with this poorer soil designated a).
Table 16
TABLE
VIIa
|
||||||||||
Rent
|
||||||||||
Type
of Soil |
Ha.
|
Invested
Capital £ |
Profit
£ |
Price
of Prod. £'s |
Output
Kilos |
Selling
Price £ |
Proceeds
£ |
In
Grain Kilos |
In
Money £ |
Increase
|
a
|
1
|
5.00
|
1.00
|
6.00
|
1.50
|
4.00
|
6.00
|
0
|
0
|
0
|
A
|
1
|
2.50 + 2.50
|
1.00
|
6.00
|
0.50 + 1.25 = 1.75
|
4.00
|
7.00
|
0.25
|
1.00
|
1
|
B
|
1
|
2.50 + 2.50
|
1.00
|
6.00
|
1.00 + 2.50 = 3.50
|
4.00
|
14.00
|
2.00
|
8.00
|
1 + 7
|
C
|
1
|
2.50 + 2.50
|
1.00
|
6.00
|
1.50 + 3.75 = 5.25
|
4.00
|
21.00
|
3.75
|
15.00
|
1 + (2 × 7)
|
D
|
1
|
2.50 + 2.50
|
1.00
|
6.00
|
2.00 + 5.00 = 7.00
|
4.00
|
28.00
|
5.50
|
22.00
|
1 + (3 × 7)
|
25.00
|
4.00
|
30.00
|
19.00
|
76.00
|
11.50
|
46.00
|
Table 17
TABLE
VIIIa
|
||||||||||
Rent
|
||||||||||
Type
of Soil |
Ha.
|
Invested
Capital £ |
Profit
£ |
Price
of Prod. |
Output
Kilos |
Selling
Price £ |
Proceeds
£ |
In
Grain Kilos |
In
Money £ |
Increase
|
a
|
1
|
5.00
|
1.00
|
6.00
|
1.25
|
4.80
|
6.00
|
0
|
0
|
0
|
A
|
1
|
2.50
+ 2.50
|
1.00
|
6.00
|
0.50
+ 1.00 = 1.50
|
4.80
|
7.20
|
0.25
|
1.20
|
1.20
|
B
|
1
|
2.50
+ 2.50
|
1.00
|
6.00
|
1.00
+ 2.00 = 3.00
|
4.80
|
14.40
|
1.75
|
8.40
|
1.20
+ 7.20
|
C
|
1
|
2.50
+ 2.50
|
1.00
|
6.00
|
1.50
+ 3.00 = 4.50
|
4.80
|
21.60
|
3.25
|
15.60
|
1.20
+ (2 × 7.20)
|
D
|
1
|
2.50
+ 2.50
|
1.00
|
6.00
|
2.00
+ 4.00 = 6.00
|
4.80
|
28.80
|
4.75
|
22.80
|
1.20
+ (3 × 7.20)
|
5
|
25.00
|
5.00
|
30.00
|
16.25
|
78.00
|
10.00
|
48.00
|
Table 18
TABLE
Xa
|
||||||||||
Rent
|
||||||||||
Type
of Soil |
Ha.
|
Invested
Capital £ |
Profit
£ |
Price
of Prod. |
Output
Kilos |
Selling
Price £ |
Proceeds
£ |
In
Grain Kilos |
In
Money £ |
Increase
|
a
|
1.00
|
5.00
|
1.00
|
6.00
|
1.125
|
5.33
|
6.00
|
0
|
0
|
0
|
A
|
1.00
|
2.50
+ 2.50
|
1.00
|
6.00
|
1.00
+ 0.25 = 1.25
|
5.33
|
6.66
|
0.666
|
0.66
|
|
B
|
1.00
|
2.50
+ 2.50
|
1.00
|
6.00
|
2.00
+ 0.50 = 2.50
|
5.33
|
13.33
|
1.475
|
7.33
|
0.66
+ 6.66
|
C
|
1.00
|
2.50
+ 2.50
|
1.00
|
6.00
|
3.00
+ 0.75 = 3.75
|
5.33
|
20.00
|
2.625
|
14.00
|
0.66
+ (2.00 × 6.66)
|
D
|
1.00
|
2.50
+ 2.50
|
1.00
|
6.00
|
4.00
+ 1.00 = 5.00
|
5.33
|
26.66
|
3.875
|
20.66
|
0.66
+ (3.00 × 6.66)
|
5.00
|
25.00
|
5.00
|
30.00
|
13.625
|
72.66
|
8.000
|
42.66
|
As the relative fertility of all existing soils, including A, is now changed, a new Differential Rent I arises. And because Differential Rent I has changed, and additional capital is invested, Differential Rent II also changes.
The fertility of this new soil, type a, is assumed to be different in each of the three examples above.
The relative fertility of soils A – D, in each example is 1:2:3:4, i.e. ½, 1, 1½, 2. The rent is related in the same manner.
[“In brief, if the rent from A = n, and the rent from the soil of next higher fertility = n + m, then the sequence is as follows: n : (n + m) : (n + 2m) : (n + 3m), etc.”] (p 714)
No comments:
Post a Comment